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ABSTRACT 
Having insights into players’ learning has important 
implications for design in an educational game. Empirical 
learning curve analysis is an approach from intelligent 
tutoring systems literature for measuring student learning 
within a system in terms of the skills involved. The 
approach can be used to evaluate how well different 
hypothesized models of required skills fit to actual student 
performance data from the game. This information can be 
used to highlight whether players need more practice with 
specific concepts, how the game’s progression might be 
altered, and whether the game is succeeding at its 
educational objectives. In this paper we apply empirical 
learning curve analysis to Beanstalk, an educational game 
designed to teach young children the concept of balance. 
We show that the process is able to give insight into the 
detailed skills and concepts (or knowledge components) 
that players are learning, and give implications for level 
(re)design by highlighting a previously unforeseen shortcut 
strategy. 
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INTRODUCTION 
The link between play and learning has been cited by many 
researchers [17,24,31,36]. In recent years, there has been a 
renewed focus on the design and development of 
educational games that foster learning through play [13,27]. 
This has led researchers to investigate the dynamics of 
learning within games and how learning can best be 
measured [8,25,26].  

Measurement of learning in educational games is often 
considered an end in itself, as a way to prove that the game 
actually fosters learning. In these cases it is common to 
measure a change in players’ aptitude with external pre-
posttests [5]. This orientation is based on the desire to 
measure skill transfer outside of the game to real world 
tasks, something often assumed but not guaranteed by a 
game’s design [29]. 

Learning measurement need not be focused purely on the 
summative context. When learning is measured throughout 
the game development process it can provide useful insight 
to designers [25]. Understanding how players are 
progressing in learning the skills targeted by a game can 
have many design implications. For example, it can 
highlight which design variations lead to more efficient 
learning [28]. 

Game user research has explored the dynamics of skill 
learning over time. By looking at the number of mechanics 
in each level and the rate at which new mechanics are 
introduced a rough learning curve can be established for a 
game [26]. Other work has also approached the issue of 
learning dynamics by examining the patterns of 
breakdowns and breakthroughs that players experience as 
they learn a new game [20]. 

The field of intelligent tutoring systems research has 
developed many methods for helping educational 
technology researchers understand the dynamics of learning 
within an educational environment. While there has been 
some application of these methods to games [9,28,32], little 
prior research has explored how measurement and 
modeling of learning can inform the design process. 
Particularly, none of these prior applications have looked at 
how the modeling process can help designers see where 
they might be wrong about the skills they believe to be 
targeted by their game and how altering the designer’s skill 
model can highlight previously unforeseen skills, a process 
referred to as model refinement [41]. 

In this paper we present an application of established 
educational data mining methods, which are normally 
applied to log data from intelligent tutoring systems, to an 
educational game. This process takes player performance 
data (from game play logs) and uses a combination of 
statistical modeling and visualization to help designers 
understand what skills are exercised by players in their 
game. The approach lends itself to actionable insight by 
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highlighting skills that are under practiced and by exposing 
skills that designers may not have expected to be present. 
We demonstrate this approach in the context of the 
educational game Beanstalk [3,12] and discuss how the 
approach might be adapted to other game contexts, 
including ones that are not explicitly educational. 
EMPIRICAL LEARNING CURVE ANALYSIS 
Empirical Learning Curve Analysis is a method for 
evaluating interactive educational software from the 
intelligent tutoring systems tradition [4]. The method is 
based on classical cognitive theory by Newell and 
Rosenbloom [34]. According to their theory, as people are 
given more opportunities to practice the use of a particular 
skill or concept their chance of incorrectly applying the 
skill or concept should decrease according to a power law. 
While there has been some debate whether a power law or 
an exponential law is more appropriate [18], the general 
notion that error rate decreases over opportunities in a non-
linear fashion holds. 

In intelligent tutoring literature, empirical learning curve 
analysis is facilitated by formalizing the skills and concepts 
required for a task into a Knowledge Component (KC) 
model [4]. A KC represents a specific unit of cognitive 
function, such as a procedural skill or element of factual 
knowledge, that is necessary to successfully perform a 
given task [23]. KC models are created by assigning labels 
of the skills or concepts required for each step of a task. 
This process is often done through a combination of 
empirical (e.g. having experts think aloud while performing 
the task) and theoretical (e.g. rationally constructing a set 
labels) task analysis [4]. This process is similar to the 
practice of enumerating the skills required on different 
levels of a game, which is advocated by some game 
designers [36]. 

Empirical Learning Curves are traditionally plotted with the 
number of opportunities to practice a KC along the x-axis 
and the average error rate of all learners on the y-axis. The 
intercept of the curve represents the initial difficulty of a 
KC, for the given student population, while the slope of the 
curve represents the rate at which learners appear to be 
mastering the KC. If the curve is steep then learners are 
reaching mastery quickly, whereas if the curve is shallow or 
flat, learning is happening slowly, or possibly not at all. 

DataShop is a data repository and tool suite that is 
commonly used to apply empirical learning curve analysis 
to instructional technologies [22]. DataShop provides a 
number of useful tools for visualizing and interacting with 
learning curves based on log data from users in terms of 
different KC models. It also provides a workflow for 
statistically fitting a given KC model to student data. This 
provides insights into the difficulty and learning rates of 
different skills under a particular KC model and makes it 
possible to formally compare which model is a better way 
of explaining the skills involved in a task. 

The Additive Factors Model (AFM) [10] is a statistical 
model commonly used to evaluate different KC models in 
terms of real learner data. AFM is a specialized form of 
logistic regression that uses student success at a step as a 0 
or 1 dependent variable. The regression uses three 
independent variable terms: (1) student intercepts, modeled 
as a random effect, which captures the assumption that all 
students come in with differing amounts of prior 
knowledge; (2) KC intercepts, which account for the 
assumption that different KCs will have different initial 
difficulty; and (3) KC slope, modeled as an interaction 
effect between the KC and number of practice 
opportunities, which encodes the assumption that all 
learners will generally increase in ability with a KC at a 
similar rate given the same number of opportunities. The 
KC slope term is constrained to be greater than or equal to 
0, meaning that students cannot “unlearn” a KC from 
experience. The regression equation takes the following 
form: 

 ln
𝑝𝑖𝑗

1−𝑝𝑖𝑗
= 𝜃𝑖 + ∑ 𝛽𝑘𝑄𝑘𝑗𝑘 + ∑ 𝑄𝑘𝑗(𝛾𝑘𝑁𝑖𝑘)𝑘  

In this equation, pij is the probability that student i gets step 
j correct. θi represents the competency (or intercept) of 
student i. Q represents a binary matrix mapping KC k to 
step j. βk represents the intercept parameter for KC k (i.e., 
the ease of this KC). γk represents the slope (i.e., learning 
rate) for KC k and Nik represents the number of 
opportunities student i has had to practice KC k . 

AFM can be seen as a generalization of the Item Response 
Theory Rasch Model [35] but accounting for learning. If the 
KC by opportunity interaction (i.e., ∑ 𝑄𝑘𝑗(𝛾𝑘𝑁𝑖𝑘)𝑘 ) is left 
off and the KC model is defined with every unique step 
being its own KC then it is equivalent to the Rasch Model. 

BEANSTALK 
The game that we will be discussing is called Beanstalk 
[3,12]. Beanstalk (Figure 1) is a game designed to teach the 
basic physical properties of a balance beam to young 
children (5-8 year olds). The game is informed by classical 
cognitive theory by Siegler where it was found that children 
have trouble learning to integrate the properties of weight 
and distance from the fulcrum when judging what will 
happen to a simple balance beam system [39]. 

In the game players must help Jack (or Jackie) return a 
teddy bear to the monster that lives in the sky by keeping 
the beanstalk balanced while it grows. Occasionally, bugs 
will fall onto the beam at the top of the beanstalk, causing it 
to fall out of balance and impede Jack’s progress to the sky. 
The player must add weight to counteract the bugs by 
growing flowers (bugs and flowers are assumed to have the 
same mass). Players are constrained by having a limited 
amount of water with which to grow flowers and also by 
having some flower positions unavailable for growing, 
depending on the specific level design. Once the player has 
run out of water the beam comes to rest according to the 
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weights on either side. If the beam is balanced then the 
player proceeds on to the next level; otherwise, the player 
loses and must retry the same level.  

The game levels are organized into a series of 7 tiers and a 
simple mastery learning paradigm is used to control 
advancement. Players must complete at least 9 levels per 
tier and successfully solve a number of levels in a row 
before advancing to the next tier. If a player has not 
satisfied both advancement conditions, then they proceed to 
an extra set of levels until they can achieve the winning 
streak criteria. 

According to prior research by Siegler [39] children 
progress through four stages of development on the way to 
mastering the balance beam task. Firstly, children primarily 
fixate on how much weight is on either side of the beam, 
regardless of its position. Second, children will begin to 
take into account each weight’s distance from the fulcrum if 
weight is the same. Third, children begin to realize that 
there are two factors at play, but do not yet know the rule 
that balance is governed by a sum of cross products of 
weight and distance. This misconception will bias their 
thinking toward whichever feature is more exaggerated. 
When neither weight nor distance is clearly exaggerated, 
stage three children will generally guess; such examples are 
referred to as conflict cases. Finally, at the fourth stage, 
children have learned that the balance beam is governed by 
the sum of cross products between distance and weight on 
both sides. Beanstalk’s goal is to advance players through 
these stages of development, ideally ending in stage four.  

The Beanstalk level designers were faced with the 
challenge of coming up with a sequence of levels that 
support Siegler’s developmental sequence. Although it is 
helpful to have a theory that states how children naturally 
progress in their learning for a domain such a theory does 
not describe how to create instruction, that is, it does not 
specify what learning experiences (i.e., level sequence) 
would be most helpful in helping learners efficiently 

acquire robust knowledge. Further, even with a theory, the 
effect of carefully designed game levels on students’ 
learning cannot be fully understood in advance. 
ANALYSIS 
Our analysis of Beanstalk focuses on the question: What 
KC model best accounts for the data? Answering this 
question enables us to understand student learning with the 
game in substantial detail, which in turn helps us 
understand whether the design of the game is successful in 
accomplishing its educational goals. The analysis follows in 
two stages. Firstly, we analyze learning with reference to an 
initial set of baseline KC models, which include naïve 
models as well as coarse-grained cognitively plausible 
models. Next, we look at different refinements of one of the 
latter models as a way of exploring hypotheses about 
difficulty and learning. These model variations come from 
rational analysis of the task at hand, and through 
exploration of the data. As discussed below, we compare 
models in terms of their fit with the game play data 
(whether students solved each level correctly) and their 
accuracy in predicting unseen data. 

To analyze Beanstalk we uploaded a sample of player log 
data to DataShop. This data was captured as part of a 
formative evaluation of the game. The evaluation was 
performed in classrooms from multiple Pittsburgh area 
public school with children in the target demographic (ages 
5-8). 177 students were given two 20-minute periods to 
play the game in class, with an average of 35.5 total 
minutes played per student. 

The original log data contains data from 12,007 level 
attempts by players; however, some data was removed 
because of systematic bias (e.g., levels that – by design – 
are 100% successful because they are designed as “worked 
examples” that introduce a new complexity to players, e.g. 
the first conflict case level is a worked example. To 
accomplish their purpose these levels are designed to be 
impossible to fail. While these levels do involve particular 
KCs we remove them from our analysis to prevent this bias 
from affecting results. This removal results in 10,330 level 
attempts in the entire sample. 
Base Modeling 
We begin the KC modeling process by developing a set of 
base models. These models serve as the backbone to 
exploring different (more fine-grained) models of the skills 
involved in playing Beanstalk. To start, we created two 
naïve KC models, one coarse-grained, and one more fine-
grained, that represent “boundaries” on the different ways 
that a game’s designers might think of skill within a game, 
but are not thought of as cognitively plausible or desirable. 

The first model is called the Single-KC (1 KC) model. This 
model assumes that there is only one knowledge component 
present in the entire dataset; this could be interpreted as 
“skill at balancing a beam” or alternatively “skill at playing 
Beanstalk”. While it is colloquial to say that a person has  

 
Figure 1. A screenshot of Beanstalk. The player is 

choosing to grow a second flower on the right to try and 
counteract the weight of the two red bugs on the left. 

 

199



aptitude at an entire game, e.g. saying someone is good at 
chess, it is almost never the case that a task involves a 
single monolithic skill [23]. It is far more likely that 
different sub-tasks invoke different kinds of skills or 
knowledge, e.g. in chess deciding which piece to move 
requires different skills than recalling the legal forms of 
movement for a given piece. Cognitive theories like ACT-R 
[7] and KLI [23] postulate that knowledge or skills within a 
task domain are built out of small knowledge components, 
which each need to be learned separately through practice. 

The second naïve model we use is called the Naïve-Tier (7 
KC) model. This model takes from the designers’ 
specification that each of the 7 tiers of the game was 
designed around a common theme, e.g. tier 1 is mostly 
simple levels meant to introduce the game mechanics, while 
more complex balance configurations fit into later tiers. It 
then assigns a KC label to each level according to the tier it 
is in. Generally, each tier is intended to be harder than the 
one preceding it, and each tier introduces new concepts. 
This would be analogous to assuming that every new tier of 
a game like Angry Birds exercises a unique skill. While it 
may be true that a new section of a game adds mechanics 
that require new skills to succeed, it is rare that no previous 
skills are required or that a single skill is used across all the 
levels of a tier. 

For the final base model we turn more directly to the 
literature from Siegler. In his original study Siegler had a 
taxonomy of balance beam judgment items informed by the 
stages learners go through in understanding the balance 
beam [39]. In developing our model we look at each level 
of the game and consider both what is present to the player 
initially and what the designers considered to be the 
solution to the level. We then take this solution state and 
consider it in terms of Siegler's taxonomy. There are 
multiple ways to solve many levels, but to demonstrate the 

utility of KC modeling to assess a designer’s intuitions 
against player data we use the designer envisioned solutions 
in model creation. This is akin to a rational task analysis for 
generating KC models [4]. 

From Siegler’s original study the main distinction between 
balance beam tasks is balance versus conflict-balance. A 
balance level, which we refer to as a mirror (M) level, is 
one where the positions and counts of weights is equal on 
both sides of the beam when using the designer envisioned 
solution. A conflict-balance (CB) level is one where the 
positions or counts of weights are different on each side of 
the beam when using the designer envisioned solution (see 
Figure 2 for an illustration of these concepts). Under this 
Siegler (2 KC) model, we would expect that mirroring 
levels have a lower initial difficulty and are easier to master 
while CB levels are initially harder and slower to master. 

Base Model Evaluation 
Once each KC model has been created and player log files 
have been tagged with their corresponding labels we upload 
the data to DataShop and use AFM (described above) to 
evaluate the models according to their fit to player data or 
their predictive accuracy on held-out data. Throughout this 
paper we report the fit of KC models using Akaike 
Information Criterion (AIC) [1], Bayesian Information 
Criterion (BIC) [37], and cross-validated root mean squared 
error (CV-RMSE) stratified by level. AIC and BIC are both 
standard measures of model fit that penalize models for 
having larger numbers of parameters; in the case of KC 
modeling, this is the number of KCs in the model. Both 
metrics have an arbitrary scale with strictly lower values 
representing a better fitting model. CV-RMSE partitions the 
data into three folds ensuring no level’s data is split 
between folds. Once the data is partitioned the model is 
trained on two folds and then used to predict the values of 
the remaining fold. The root mean square of the error 
between the prediction and actual values is then reported, 
with smaller values indicating a more accurate model.  

When evaluating KC models the different fit statistics often 
agree with each other, but in cases when they do not it is 
useful to understand how their conclusions differ. AIC and 
BIC more strongly punish for having too many KCs, with 
BIC being stronger in this regard. The CV-RMSE values 
are arguably more rigorous measurements of fit because 
they evaluate predictive ability. Level-stratified CV-RMSE 

Figure 2. Level specifications for a mirror (M) level (left) and conflict-balance (CB) level (right). The bugs are given as the 
initial conditions of the level, the flowers represent the player’s solution, and the blue circles below the beam represent the 

amount of water initially available to the player. 
 

Model 
Name KCs AIC BIC 

CV-
RMSE  

Single-KC 1 14276.19 15574.36 .4950 
Naïve-Tier 7 13118.61 14503.81 .4780 

Siegler 2 12119.20 13430.15 .4479 

Table 1. Fit statistics for the 3 base models. Cross-
Validated Root Mean Squared Errors (CV-RMSE) is 

calculated using 3-fold cross-validation. 
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is more useful for evaluating the model’s ability to predict 
new items. Additionally, item stratification gives a sense of 
how well a KC transfers between items within a tutor, or 
levels in a game. 

The fit statistic results for the base models can be seen in 
Table 1. From the results, the Siegler model is the best 
fitting model across all metrics. This suggests that the 
Siegler based KC model is the most appropriate description 
of the skills involved in Beanstalk when compared to the 
two naïve models. 

Taking the model parameter results of the Siegler based 
model fit by AFM, we can plot the learning curves shown 
in Figure 3. Throughout this paper all learning curves are 
rendered using a loess smoothing [14] over both the actual 
player error rate and the error rate predicted by AFM. All 
curves are also rendered with standard error bounds. This is 
done to denote the drop off in the player population as the 
opportunity count increases – this drop off occurs because 
players who master a skill will have advanced on to new 
problems. This drop off explains the much greater standard 
error on later opportunities clearly shown in Figure 3. 

In Figure 3, each curve shows a decrease in error rate on M 
and CB levels as players are given opportunities to practice 
each skill, i.e. attempt a level for that KC. The patterns we 
see fit with our hypothesized dynamics where M levels 
have a lower initial difficulty (KC intercept ~44% error) 
and are easier to master (KC slope .056). In contrast the CB 
levels are initially more difficult (KC intercept ~77% error) 
and are harder to master (KC slope .008).  

While these results generally concur with those of Siegler 
they have some implications in terms of Beanstalk’s design. 
For example, while the CB KC does appear to demonstrate 
a pattern of learning it does not converge to a very 
promising value, roughly 55.76% error by most players’ 
last opportunity to practice. From these results it could be 
concluded that the game seems to do well with mirroring 
cases but does not help students master the conflict-balance 
concept, perhaps because it does not provide enough 
practice. However, this assumes that the 2KC Siegler model 
is the best explanation of skill in Beanstalk. It is hard to tell 

what design recommendations could follow from this 
conclusion because the CB KC labels roughly half of the 
game’s levels. A finer grained analysis can be used to 
provide more actionable insight. 
Model Variation 
To better understand what can be done with the conclusions 
of the 2KC Siegler model we explore how variations of the 
model impact our measured patterns of learning in the 
game. As a first step we explore creating a finer grained 
model by splitting the Siegler model to better understand 
what is causing the high level learning patterns in the M 
and CB KCs. To do this we apply a rational task analysis 
approach to Beanstalk to create a cognitively informed 
variation of the model. Next, we further investigate the 
differences between the models’ predicted values and the 
actual error rate to find whether encoding levels with KCs 
that capture a strategy no foreseen by the designers might 
better account for the data. 

Base Model Elaboration 
In this first variation we test whether a more fine-grained 
knowledge model might reflect players’ psychological 
reality better. To this end we examined an elaboration of 
Siegler’s original taxonomy by looking at the number of 
positions involved on each side of the beam. Because 
balance is ultimately governed by a sum of cross products 
rule we posit that levels that require the integration of 
multiple peg positions per side are more cognitively 
demanding than ones that do not. Under this model a 
particular balance level can have either single or multiple 
pegs being used on either the given side (i.e. the side that 
starts with bugs on it) or the acting side (i.e. the side that 
the player works on). The resulting model has 6 KCs: 

• M-GSP-ASP – mirroring with a single peg used on each 
side of the beam (used on 12 levels). 

• M-GMP-AMP – mirroring with multiple pegs used on 
each side of the beam (used on 21 levels). 

• CB-GSP-ASP – conflict-balance with a single peg used 
on each side of the beam (used on 19 levels). 

 
Figure 3. Learning curves for the Mirror (M) and Conflict-Balance (CB) KCs of the Siegler based KC model. The red line plots 

the actual player error rate at each opportunity while the blue line plots the curve fit by AFM. The shaded regions on both 
lines denote the standard errors of the data. 
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• CB-GSP-AMP – conflict-balance with a single peg on 
the given side of the beam and multiple pegs on the 
acting side of the beam (used on 9 levels). 

• CB-GMP-ASP – conflict-balance with multiple pegs on 
the given side of the beam and a single peg on the acting 
side (used on 6 levels). 

• CB-GMP-AMP – conflict-balance with multiple pegs 
used on both sides of the beam (used on 14 levels). 

Under this Siegler+Pegs (6 KC) model we would 
hypothesize that levels with single pegs have a lower initial 
difficulty and are easier to learn than ones involving 
multiple pegs. This is because the mental calculation to 
solve the balance requires an extra addition step when there 
are multiple pegs on a side, whereas a single peg side only 
requires a single multiplication step. 

When fit with AFM this finer grained model outperforms 
the original Seigler model on all statistics (see Table 2). 
Looking at the plotted curves (Figure 4) we find that our 
original hypothesis is not upheld by this model. Levels 
involving multiple pegs (MP) appear to have lower initial 
difficulties than those involving single pegs (SP), 

particularly when the multiple pegs appear on the acting 
side of the beam (AMP). One way to explain the difference 
in initial difficulty is that single peg levels generally 
precede levels with multiple pegs. The game begins with 
single peg levels and the first time conflict cases are 
introduced is with single peg levels, suggesting there is 
some amount of balance dynamics and game mechanics 
learning accounted for by the single peg KCs. However, the 
two curves which seem to most strongly support the 
conclusion that multiple pegs is harder (CB-GSP-AMP, and 
CB-GMP-AMP) do not appear to demonstrate a strong fit  
between the predicted and actual values. 

 
Figure 4. Learning Curves for the Siegler+Pegs model. The red line plots the actual player error rate at each opportunity while 

the blue line plots the curve fit by AFM. The shaded regions on both lines denote the standard errors of the data. 

 

Model 
Name KCs AIC BIC 

CV-
RMSE 

Siegler 2 12119.20 13430.15 .4479 
Siegler+Pegs 6 11845.57 13214.46 .4501 

SP+Rote 7 11050.39 12433.76 .4205 

Table 2. Fit statistics for the two variants and the original 
Siegler model. Cross-Validated Root Mean Squared Error 

(CV-RMSE) calculated using 3-fold cross-validation. 
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Another pattern visible from the learning curves that 
parallels the original Siegler model is that learning appears 
to be happening in mirroring (M) KCs but not in conflict-
balance (CB) KCs, with the exception of CB-GSP-AMP. 
This would mean that players tend to be learning the pattern 
in CB-GSP-AMP levels but not in the other conflict levels. 
This could be because players are simply not given enough 
practice with conflict-balance items, suggesting that the 
design team might need to design more levels. 
Alternatively, this pattern could be from a more nuanced 
aspect of the design not communicating balance concepts 
correctly. This pattern warrants a deeper exploration of the 
Beanstalk data. 

Alternative Strategy Discovery 
A notable pattern visible in the learning curves fit by the 
Siegler+Pegs model is that the CB-GSP-AMP and CB- 
GMP-AMP curves do not fit the actual performance data 
well. This is evidenced by the particularly jagged 
appearance of the actual player data (solid red line) relative 
to the fit model’s curve (dashed blue line). In empirical 
learning curve analysis this kind of pattern is characteristic 
of a hidden skill or difficulty factor [6]. This suggests that 
while our current model considers a set of levels to exercise 
a particular KC it is possible that a subset of those levels 
actually exercises a different KC that we have not yet 
considered. The Conflict-Balance curve of the original 
Siegler model (Figure 3) has a similar character. 

To get a better understanding of what knowledge 
components the CB-GSP-AMP and CB-GMP-AMP levels 
involve, we can look at model fit on a level-by-level basis 
rather than a KC basis, as we have done so far. This is done 
by examining the levels that have a large residual error rate 
(i.e. difference between the model’s prediction and the 
actual error rate observed in players). DataShop provides a 
tool for this kind of analysis called the Performance 
Profiler. Figure 5 shows a performance profiler view of the 
Beanstalk levels with the six highest and six lowest residual 
error rates. Each bar shows the actual error rate on a level 
while the blue line shows the predicted error rate. The 
levels to the left of the figure are substantially easier than 
our current skill model would predict, while the levels to 
the right of the figure are harder than expected. This pattern 
suggests that these levels particular would benefit from a 

more thorough investigation to see if some aspect of their 
design exercises a different skill than we may have thought. 

When examining the level design specifications for the 
levels that are substantially easier than expected, we found 
that all of the levels could be solved using a simple strategy 
of putting a single weight on every open peg (see Figure 6 
for examples). This is a form of shallow strategy in that it 
sometimes leads to correct answers to Beanstalk levels, but 
it is not hard to construct cases in which it would lead 
players astray (in fact, Beanstalk has some levels in which 
the rote strategy leads to wrong answers). Using the rote 
strategy does not reflect an understanding of the underlying 
physics principle. Avoiding this kind of shallow learning 
and promoting acquisition of appropriately contextualized 
knowledge is a key goal in education [2]. 

We developed a simple script to parse the game’s level 
specifications and found all levels that could be solved 
using the rote strategy. We created the SP+Rote (7 KC) 
model that re-categorizes levels where the simple procedure 
could be applied with a “Rote Strategy” KC. This relabeling 
affected 4 M-GMP-AMP, 2 CB-GSP-ASP, 1 CB-GMP-
ASP, 3 CB-GSP-AMP, and 5 CB-GMP-AMP levels. We 
then re-ran AFM using this new KC model. 

This new model fits the player data better than the original 
Siegler model and the Siegler+Pegs model (see Table 2). 
This result would suggest that it is more accurate to 
consider these levels as exercising the rote solution strategy 
rather than the domain relevant KC they were previously 
assumed to exercise. This change in KC label also has an 
effect on the curves fit by the model (see Figure 7). The 
rote solution strategy primarily appears on levels in the CB-
GSP-AMP and CB-GMP-AMP categories. When the rote 
strategy is separated out as its own KC is has the effect of 
smoothing out the two previously jagged curves, adding 
credence to the interpretation that this model is a more 
reasonable explanation of skill in the game. 

The change in the CB learning curves also has an effect on 
our interpretation of the model with regard to our 
hypothesis of more pegs meaning more difficulty. When the 
Rote Strategy KC is present in the model all of the CB 
related curves shift to having roughly equal intercepts 

 
Figure 6. A plot of the actual and predicted error rates for the 

top and bottom 6 levels sorted by residual. 

 
Figure 5. The specification for two levels that can be solved 

using the rote solution strategy. 
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(~84% error rate on average). This would imply that, within 
the context of the rote solution strategy, knowing about the 
number of pegs involved on either side of a beam does not 
provide insight into the initial difficulty of a conflict-
balance level. 

One pattern in the data that is still not explained is the fact 
that players appear to be learning the CB-GSP-AMP KC 
but none of the other conflict-balance KCs. When 
examining the levels that fit the CB-GSP-AMP category, 
after accounting for the rote solution strategy, a simple 
pattern does become apparent from their configurations. In 
all of these levels, players do not have to stack flowers, i.e. 
place more than one weight on a peg, to solve the balance. 
This has a simplifying effect on the sum of cross products 
calculation that governs the balance beam by turning one 
side of the equation into pure addition. Contrary to what 
might have been expected from a purely rational cognitive 
perspective, these levels are likely easier for players to learn 
because of this simplification. The game designers could 
benefit from this information and move these levels earlier 
to ease the introduction of the conflict-balance concept. 

Overall, the patterns present from the rote solutions strategy 
would suggest that the designers might do well to consider 
removing or altering levels that can be solved with the 
strategy. One approach might be to try to design the levels 
in such a way that this strategy can never succeed. 
Presumably this would lead students to not develop the 
strategy in the first place. An alternative or supplementary 
approach may be to extend the game so that it better 
supports understanding of the balance formula. The 
prevalence of the rote strategy (which reflects a lack of 
understanding) suggests that learning the sum of cross 
products formula purely inductively may be very difficult 
for the target audience and may require further scaffolding. 

DISCUSSION 
Our analysis throughout this paper has facilitated a clearer 
understanding of the dynamics of learning in the game 
Beanstalk. Initially, we found that a model informed by the 
original cognitive research that inspired the game’s design 
was a more accurate description of learning in the game 
than other baseline models. Cognitively informed variations 

on this initial model provided further nuance to our 
understanding of skill in the game. Finally, an exploration 
of the differences between our model’s predictions and 
player performance highlighted a previously unforeseen 
strategy that is potentially distracting students from the 
goals of the game. Each of these findings was made 
possible through the application of empirical learning curve 
analysis and knowledge component modeling. 

Now that we have a better understanding of the game the 
next step is to recommend changes so that Beanstalk can 
further develop players’ ability with the concepts of the 
balance beam. A clear recommendation that follows from 
our findings is to remove the possibility of the rote solution 
strategy altogether, or better yet, to keep only the levels on 
which a rote solution can be constructed but fails as a way 
of demonstrating the strategy’s lack of generality. If players 
have the ability to fall back on simplistic logic, they are less 
likely to engage with the game’s target concepts to reach a 
deeper understanding of physics. The possibility for a rote 
strategy is simple enough to detect with a script, but in 
more complex cases, other researchers have developed 
techniques for generating level configurations that are 
guaranteed to avoid such short cut solutions [40]. 

A second recommendation follows from the finding that 
players appear to approach mastery of the concept of 
mirroring but do not progress quite as far in learning 
concepts related to conflict-balance, with the one exception 
highlighted by CB-GMP-ASP levels. One way of 
interpreting this result is that players clearly get sufficient, 
and perhaps too much, practice with mirroring while 
conversely not getting enough practice with conflict 
balance levels. This would suggest that the pacing of skill 
ramp up should be altered to get away from mirroring levels 
sooner in favor of more conflict-balance designs. One 
potential solution could be to move the CB-GSP-AMP 
levels to be earlier in the game, because they demonstrate 
the greatest learning among CB levels, and their reframing 
of the sum of cross products rule could make the conflict-
balance concept more approachable. An alternative 
approach would be to include more scaffolding for sense 
making, i.e. helping players to see and reason through the 

 
Figure 7. Learning curves altered by adding the Rote Strategy KC to the Siegler+Pegs model (other curves remain unchanged). 

The red line plots the actual player error rate at each opportunity while the blue line plots the curve fit by AFM. The shaded 
regions on both lines denote the standard errors of the data. 
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physical process behind the game. This kind of alteration 
could manifest through tutorial dialogs or extra hinting 
mechanisms. These changes have the potential to make the 
game more effective, educationally. 

In addition to iterating on the game design we could further 
refine our modeling procedures to incorporate other 
processes from the educational data mining literature. For 
example, in our work, we omitted the “worked example” 
levels because their being impossible to fail introduced 
systematic bias into our analysis despite these levels dealing 
with particular KCs. An elaboration of AFM, called the 
Instructional Factors Model, has been proposed that is 
designed to deal with cases when learners are exposed to a 
concept but do not directly practice it themselves [11]. This 
expanded model could entertain the possibility that players 
learn from the exposure to a particular level design, such as 
a worked example or a tutorial level, without having to play 
through it to get success feedback. This new model is not 
yet integrated into the DataShop workflow but it is an 
approach we plan to explore in future work. 

While we have discussed empirical learning curve analysis 
in the context of an educational game, there is nothing 
preventing the method from being applied to purely 
entertainment games. Indeed, the formulation of a learning 
curve should be applicable to any environment where 
continued exposure to a concept can be expected to result in 
better performance [33]. Applying our approach to an 
entertainment game would require a means of logging 
player performance with tags for when a skill has the 
potential to be exercised and whether it was exercised 
correctly, a process that should be easy with common game 
telemetry approaches [21,38]. While DataShop provides a 
number of useful visualization and data management tools, 
the AFM model can be run relatively simply as a logistic 
regression, available in most statistical packages. 

One nuance of the AFM model is that it assumes that 
learner’s performance trends to an error rate of 0. This is 
because, in an educational context, AFM is most often 
applied to data that assumes a model of mastery learning 
[15]. In an entertainment context it is often desirable that 
even expert players have some appreciable chance to fail in 
a game because the risk sustains engagement [16,28]. A 
further elaboration of the AFM model has recently been 
proposed, called the Additive Factors Model + Slip, which 
adds an additional parameter to each KC that allows the 
performance estimates on KCs to converge to a non-zero 
value [30]. This elaboration of the model would allow for 
estimates of initial difficulty for a level as well as a measure 
of mastered difficulty, or hard the level is even when one 
has had experience with a concept. 

It is worth noting that this type of learning analysis is most 
appropriate when an objective understanding of skill is 
required, i.e. when player ability measured is with respect 
to the task alone and not contingent on other players’ 
ability. The orientation toward objective understanding of 

skill is driven by the method’s original educational purpose. 
From an educational perspective it is desirable to measure 
skill within the context of a general task that has the 
potential to transfer outside of the game, however such 
transfer must still be validated with measures external to the 
game. Other models exist for player skill estimation within 
the subjective context of a player base [19], however these 
approaches tend not to explicitly account for player learning 
and they do not provide an understanding of how players 
are learning the game itself in the absence of other players. 

One potential downside of this approach is its requirement 
of a large base of player data. AFM was originally 
developed for step-level intelligent tutoring data, which is 
commonly captured in classroom studies. Since AFM’s 
statistical formulation has one parameter for each student 
and two for every KC (intercept and slope) it can easily 
reach a high dimensionality that would be unsuitable to fit 
with small datasets. This restriction could prevent it from 
being applied in earlier design stages and initial playtests 
where the required amount of data is not yet available. In 
such cases it might be better to apply a more rational design 
approach such as the one presented by Linehan and 
colleagues who examined the progression of puzzle 
introduction in commercial games as learning curves [26]. 
This approach requires no true player data, and so differs 
from our empirical learning curve analysis, but can provide 
insight into difficulty progression in a game and potentially 
scaffold an eventual empirical analysis in the future. 

CONCLUSION  
In this paper we demonstrated an application of empirical 
learning curve analysis to the educational game Beanstalk. 
Through this approach we were able to develop an 
appropriate model of the skills exercised by the balance 
beam tasks in the game. Our skill model development was 
informed by foundational research, rational analysis, and 
empirical investigation. This new model provided insights 
into how the game can be redesigned to better accomplish 
its educational goals and also highlighted a previously 
unforeseen shortcut strategy to some game levels. This 
work represents a first demonstration of how these kinds of 
educational data mining techniques can inform the 
understanding of skill in games while yielding actionable 
design recommendations. We hope that other researchers 
and game design practitioners can benefit from applying 
similar approaches to their own game, educational or 
otherwise, and look forward to future work exploring the 
dynamics of skill acquisition in games. 
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